An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells

Authors

  • S. Rowshanzamir Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran|Fuel Cell Laboratory, Green Research Centre, Iran University of Science and Technology, Tehran, Iran
  • Somayeh Sarirchi Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract:

Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties such as high protonconductivity, good mechanical and chemical stability at fuel cell conditions, and .... However, its high cost, reducing the performance at temperature higher than 80℃, and low humidity are the majorproblems. Hydrocarbon polymers are encouraging alternative to Nafion, since they show the same oreven superior performance than Nafion at high temperature and low humidity by some modifications. Numerous researches confirmed that Sulfonated poly ether ether ketone (SPEEK) is a promising PEMbecause of its low-cost, low fuel cross over, and acceptable thermo-mechanical stabilities. However,suitable proton conductivity in SPEEKs is depending on the high degree of sulfonation (DS), whichcould deteriorate the mechanical properties of SPEEK membranes progressively at the high level. Toovercome this dilemma, various SPPEK-based hybrid/blend membranes are synthesized, and theeffects of the introduced fillers on their performance are investigated. The introduced inorganicparticles to the polymer membranes might be silica, zirconia, titania, heteropolyacids, carbonnanotubes, and.... Enhanced proton conductivity, water retention at high temperatures, and higherelectrochemical properties are mentioned as some advantages of incorporating inorganic material intothe polymer matrix. High thermo-mechanical resistance and electrochemical activities are supplied byinorganic moieties, while the organic parts supply plasticity and easier ductility at the low temperature.Indeed, SPEEK blends have a good potential to alter Nafion at the high temperature and/or relativelylow humidity. In this paper, the last advances in progress of SPEEK-based organic/inorganiccomposite membranes that perform truly under fuel cell conditions are discussed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Recent advances in sulfonated poly ( ether ether ketone ) based proton exchange membranes for high temperature fuel cells

Proton exchange membranes (PEMs) play an important role in the fuel cell systems. A good PEM must meet a series of requirements such as high proton conductivity, excellent mechanical strength and stability, chemical and electrochemical stability, low fuel crossover, etc. Nafion is currently the most commercially utilized electrolyte membranes for polymer electrolyte fuel cells, with high chemic...

full text

Poly (Ether Ether Ketone) Based Anion Exchange Membrane for Solid Alkaline Fuel Cell: A Review

Solid alkaline fuel cell is employed by polymer anion exchange membrane (AEM) that is permeable to hydroxide ion. A number of polymers have been proposed for AEM which include polysulfone (PSF), poly (phenylene oxide) (PPO), and poly (ether ether ketone) (PEEK). The purpose of this paper was to conduct a critical review on the development of PEEK polymer as AEM, particu...

full text

The Effects of Sulfonated Poly(ether ether ketone) Ion Exchange Preparation Conditions on Membrane Properties

A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone) (PEEK). This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced...

full text

A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells.

The structure of a commercial sulfonated poly(ether ether ketone) (sPEEK) membrane was analyzed by Small-Angle X-Ray Scattering (SAXS) for different water uptakes obtained after immersion in liquid water at various temperatures. For low membrane swelling, the SAXS profile displays only a wide-angle peak in the 0.2-0.3 Å(-1) region. As the membrane swells, two supplementary correlation peaks ari...

full text

Preparation and Physical Characterization of Sulfonated Poly (Ether Ether Ketone) and Polypyrrole Composite Membrane

Sulfoanted poly(ether ether ketone) membranes were prepared by the sulfonating agent sulfuric acid. These membranes were modifed by incorporating conducting polymer polypyrrole in order to increase the ionic conductivity and reduce the methanol transmission rate. The modifed composite membranes were then compared on the basis of ionic conductivity, methanol transmission...

full text

Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone) Membranes: Synthesis and Characterization

Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS), were synthesized inside a swollen sulfonated poly(ether ether ketone) membrane (sPEEK). The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonanc...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  46- 60

publication date 2017-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023